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Figure 1. Our method performs instance segmentation of raster sketches. It effectively handles diverse types of sketches, accommodating

variations in stroke style and complexity.

Abstract

Sketch segmentation involves grouping pixels within a
sketch that belong to the same object or instance. It serves
as a valuable tool for sketch editing tasks, such as mov-
ing, scaling, or removing specific components. While im-
age segmentation models have demonstrated remarkable
capabilities in recent years, sketches present unique chal-
lenges for these models due to their sparse nature and wide
variation in styles. We introduce INKi, a method for in-
stance segmentation of raster scene sketches. Our approach
adapts state-of-the-art image segmentation and object de-
tection models to the sketch domain by employing class-
agnostic fine-tuning and refining segmentation masks using
depth cues. Furthermore, our method organizes sketches
into sorted layers, where occluded instances are inpainted,
enabling advanced sketch editing applications. As existing
datasets in this domain lack variation in sketch styles, we
construct a synthetic scene sketch segmentation dataset fea-
turing sketches with diverse brush strokes and varying lev-
els of detail. We use this dataset to demonstrate the robust-
ness of our approach and will release it to promote further
research in the field.

1. Introduction

Sketches serve as a powerful tool for visual exploration,
ideation, and planning. Traditional sketching workflows

often begin with artists working on a single canvas layer
(either physical or digital) to maintain creative momentum.
As the sketch evolves and requires refinement (e.g., ad-
justments to composition, perspective, or other elements),
artists face the tedious task of manually segmenting differ-
ent elements of the sketch into discrete, editable layers. Au-
tomating the sketch segmentation process offers a promis-
ing solution. However, this task presents unique chal-
lenges due to the sparse and abstract nature of line draw-
ings, as well as the inherent variability in human sketching
styles. Existing methods for scene-level sketch segmenta-
tion typically rely on training dedicated models using anno-
tated sketch datasets [5, 26, 47]. However, most available
datasets are confined to specific sketch styles and a limited
set of object categories, restricting the generalization capa-
bilities of existing methods.

In this work, we introduce INKi, a method for instance
segmentation of raster scene sketches that outperforms pre-
vious approaches in accommodating a wider variety of
sketch styles and concepts. We use the segmentation map
to divide the sketch into sorted layers to support effective
sketch editing.

Our method builds upon Grounded SAM [24], a state-
of-the-art approach for open-vocabulary image segmenta-
tion, which has demonstrated remarkable capabilities in
segmenting complex scenes across diverse object cate-
gories. Grounded SAM combines two models to achieve
this: Grounding DINO [17] for object detection and Seg-
ment Anything (SAM) [12] for mask generation. We ana-



lyze the performance of these models on sketch inputs, re-
vealing that the domain gap between real and sketched ob-
jects presents significant challenges for Grounding DINO.
In contrast, SAM exhibits a surprising ability to general-
ize to sketches, though it still faces difficulties specific to
the sketch domain. To address the gap in object detection,
we fine-tune Grounding DINO on a small subset of anno-
tated scene sketches from the SketchyScene dataset [47].
Our straightforward fine-tuning technique proves highly ef-
fective, achieving a substantial improvement in Grounding
DINO’s detection performance on sketches, with Average
Precision increasing from 24% to 75%.

For object segmentation, we apply SAM [12] in the
sketch domain, using detected object regions from our fine-
tuned Grounding DINO. This is followed by a depth-based
refinement stage to resolve ambiguities in overlapping re-
gions. Finally, we decompose the segmented sketch into
sorted layers and employ a pretrained image inpainting
model [31] to fill in missing regions. This layered repre-
sentation facilitates sketch editing, allowing users to drag
or manipulate segmented objects without the need to man-
ually sketch the affected regions, as we demonstrate in the
provided video.

To evaluate our method on diverse scene sketches, we
construct a synthetic annotated dataset that extends exist-
ing benchmarks along three key dimensions: drawing style,
stroke style, and object categories. The dataset integrates
two complementary pipelines to enhance diversity. The first
pipeline builds on SketchyScene [47], expanding its clipart-
like sketches with styles ranging from high-fidelity repre-
sentations to symbolic, abstract sketches, introducing chal-
lenging out-of-distribution cases. The scenes are created in
vector format to allow for stroke style variations, includ-
ing Calligraphic Pen, Charcoal, and Brush Pen styles. The
second pipeline leverages the Visual Genome dataset [13],
which provides annotated scenes with object variety. Us-
ing the InstantStyle method [33], we generate expressive,
natural-looking sketches spanning 74 categories, extending
SketchyScene’s original 45 categories by 54 new categories.
Our dataset contains 20,000 annotated scene sketches in to-
tal, and is highly extensible. Our evaluations demonstrate
that INKi generalizes well to these challenging variations,
significantly advancing the state of the art.

2. Related Work
2.1. Part-Level Sketch Segmentation

The majority of work in the sketch segmentation domain
focuses on part-level semantic segmentation, in which the
goal is to assign labels to object parts (e.g., the body, wings,
and head of a bird). These methods often rely on curated
part-level sketch segmentation datasets [6, 8, 10, 14, 36]
to train a segmentation model, and use various network ar-

chitectures, including CNNs [32, 46], RNNs [11, 22, 36],
Graph Neural Networks [40, 44], Transformers [34, 45],
and more specific techniques such as deformation net-
works [20] and CRFs [27]. These approaches typically op-
erate on a fixed set of object classes, and recognize a prede-
fined set of object parts within them. Other work focuses on
perceptual grouping [14, 15] to achieve class-agnostic seg-
mentation. However all of these methods are designed to
tackle part-level segmentation and are not suitable for scene
sketches.

2.2. Scene-Level Sketch Segmentation

Scene-level sketch segmentation remains largely under-
explored. Qi et al. [21] extend the perceptual group-
ing approach to scene-level images, forming semantically
meaningful groupings of edges, though with limited accu-
racy on complicated scenes. Zou et al. [47] construct the
SketchyScene dataset, providing annotated scene sketches
with meaningful layouts of object interactions, and use it
to train an instance segmentation model based on the Mask
R-CNN architecture [9]. However, their method is limited
to the predefined categories included in the dataset, and the
proposed dataset contains sketches with clipart-like appear-
ance which challenges the model’s ability to generalize to
other artistic styles. Building on SketchyScene, Ge et al.
[7] introduced SKY-Scene and TUB-Scene by replacing its
object components with sketches from the Sketchy [26] and
TU-Berlin [6] datasets. However, their proposed fusion net-
work is fundamentally limited to the fixed set of classes it
was trained on, and the trained network weights are not pub-
licly available. SFSD [43] develops a dataset featuring more
complex scene sketches, and utilizes a bidirectional LSTM
to produce stroke-level segmentation. Unfortunately, the
dataset and model are not publicly available. SketchSeger
[38] proposes a hierarchical Transformer-based model for
semantic sketch segmentation. However their model is in-
herently restricted to the predefined set of classes used dur-
ing training. Bourouis et al. [2] finetune the CLIP image
encoder [23] on the FS-COCO [5] dataset, leveraging the
model’s vision-language prior to enable open-vocabulary
scene segmentation. However their method is designed
for semantic segmentation, and it struggles to generalize to
more challenging sketch styles and scene layouts.

2.3. Image Segmentation

The task of image segmentation have been widely ex-
plored [1, 4, 9, 35]. The advent of vision-language mod-
els [16, 23, 37] has led to numerous object detection and
segmentation methods with impressive generalization capa-
bilities [12, 19, 24, 41]. Grounding DINO [17] is a state-
of-the-art object detection model trained on over 10 mil-
lion images. It builds on top of DINO [3], a strong vision
encoder, with effective grounding module that fuses visual
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Figure 2. Overview of the sketch segmentation pipeline. Given an input sketch image, our framework first detects bounding boxes using
a customized Grounding DINO to obtain region proposals, and then perform segmentation with SAM models. The localization and
segmentation are refined by incorporating the depth features. The result segmentation can be viewed as a layered decomposition of object

components in the original sketch.

and textual information, enabling open-vocabulary detec-
tion of unseen objects. Segment Anything (SAM) [12] is
an image segmentation model trained on over 11 million
images and 1.1 billion masks, capable of producing high-
quality object masks based on various forms of condition-
ing such as bounding boxes. Grounded SAM [24], which
our method builds upon, combines Grounding DINO and
SAM for open-vocabulary image segmentation, achieving
robust performance across diverse object categories. Yet,
despite demonstrating impressive capabilities on natural im-
ages, we show that these models struggle with segmenting
sketches.

3. Method

Given a raster sketch, our goal is to produce a segmentation
map such that pixels belonging to the same object instance
are grouped together. Based on the segmentation map, we
also divide the sketch into layers, sorted by depth. Our
pipeline is illustrated in Figure 2. Given the input sketch,
we first perform object detection using a fine-tuned Ground-
ing DINO model, which produces a set of candidate ob-
ject bounding boxes. These bounding boxes are then used
to produce an initial set of object masks with a pre-trained
Segment Anything (SAM) [12] model. Next, we perform a
refinement stage that leverages scene depth information and
classical morphological operations to assign the final seg-
mentation. This stage also employs a pre-trained inpainting
model [31] to produce scene layers.

3.1. Sketch-Aware Object Detection

Grounding DINO [17] is an object detection model which
outputs bounding boxes for recognized object instances,
based on a given text prompt describing the scene. While
effective for natural images, the model in its original con-
figuration demonstrates limited generalization to sketches
(we show this numerically in Section 5). To address this
limitation, we fine-tune Grounding DINO on sketches. The

largest available annotated sketch dataset containing com-
plex scenes is SketchyScene [47]. It contains 30K seg-
mented sketches across 45 class labels. We find that a naive
fine-tuning with the SketchyScene data leads to severe over-
fitting to the small set of predefined object classes.

To overcome this overfitting, we propose a class-agnostic
fine-tuning strategy. Instead of relying on predefined class
labels, we train the model to distinguish between instances
based on their visual characteristics, aiming to push the
model to rely on Gestalt properties such as closure, con-
tinuity, and emergence, to group together strokes forming
a single object. Specifically, we utilize a small subset of
5000 sketches from the SketchyScene dataset, and consoli-
date their class labels into a single label, “object”. We use a
Grounding DINO model initialized with a pretrained Swin
Transformer [18] backbone and fine-tune the model’s de-
tection head for bounding box prediction. For training, we
employ standard object detection losses used in the original
Grounding DINO training (Focal Loss, L1 Loss, and GloU
Loss), while eliminating the class recognition loss. At in-
ference, the model is prompted with the input image and
the word “object” to detect all potential object instances in
the scene. This results in an initial set of £ bounding boxes
B = {B;}%_, and a confidence score per bounding box.

3.2. Mask Extraction and Bounding Boxes Refine-
ment

Once the bounding boxes are obtained, we use a pretrained
Segment Anything (SAM) model [12] to extract masks for
the corresponding objects directly from the sketch. This
results in an initial set of k masks M = {M;}%_, which we
refine using simple binary operations such as morphological
closing and flood-fill, to eliminate small artifacts.

Next, we use the refined masks to enhance the set of gen-
erated bounding boxes. A common practice is to eliminate
redundant bounding boxes often corresponding to the same
object (such as B;, B; shown in red and blue in Figure 2)
using Non-Maximum Suppression (NMS), which filters out
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Figure 3. Resolving ambiguities in overlapping regions. The depth
map D is sampled along sketch pixels at evenly spaced points,
and the sampled points are grouped by their corresponding object
(e.g., P; corresponds to the 7’th object). Each object is assigned a
depth score based on the majority of depth values from the sam-
pled points. Ambiguous pixels are then assigned to the mask with
the highest depth score, prioritizing foreground objects.

bounding boxes with low confidence scores that has signifi-
cant intersection with others. However, IoU of the bounding
boxes may not reliably reflect object overlap in cases where
objects do not fully cover the pixels in their bounding boxes.
This issue is especially pronounced in sketches, which are
sparser than photorealistic images. We use the initial set of
masks to compute a more fine-grained IoU. Specifically, for
a pair of overlapping bounding boxes B; and B;, we extract
the regions within the bounding boxes that intersect with the
sketch: M; x S, M; xS, and compute the IoU of these re-
gions to define an “overlapping” score between two objects
1,]:

O(i,j) =IoU(M; * S, M; « S). (1)

For an overlapping pair B;, B; if O(4,j) > 0.5, we
consider the detections to be covering the same object and
retain only the bounding box with the highest confidence
score. This results in a filtered set of bounding boxes
B C B and their corresponding masks MC M.

The filtered set of masks may still include overlapping
regions, as illustrated in Fig. 3, where it is unclear which
instance the pixels should be associated with. To resolve
such overlaps and assign each pixel to a single object in-
stance, we give priority to objects in the foreground. We
utilize DepthAnything [39] to extract the depth map D of
the input sketch. We then sample D along the sketch pixels
at equally spaced points P = {p1,pa,...,pn}, analogous
to projecting rays through the sketch pixels to the scene.
For each mask M;, we identify the subset of points that lie
within the mask: P; = {p € P|p € M;}. For example,
in Figure 3, P; represents the set of points belonging to the
sofa, while P; denotes the set of points belonging to the cat.
For each point p € P; we associate a depth value D(p) us-
ing the depth map. We then compute a depth score for each
mask as the mode of the depth values associated with its
sampled points:

ds(M;) = arg max count({D(p)|p € P;}). ()
D(p)

Input Sketch M; xS H(M;) C; Inpainted M;

Figure 4. Object layers are isolated and inpainted using a pre-
trained SDXL model. The inpainting mask for each object is de-
fined by intersecting overlapping masks with the object’s bounding
box.

Based on this score, we assign ambiguous pixels to the mask
with the highest depth score, ensuring that foreground ob-
jects take precedence. Lastly, to ensure complete coverage
of the sketch, we employ a watershed-based [28] refine-
ment, propagating existing mask labels to previously un-
labeled sketch pixels.

3.3. Layer Inpainting

As a final step we extract complete layers for each object
in the sketch, inpainting any occluded regions using a pre-
trained SDXL inpainting model [31]. The goal of this stage
is to support basic sketch editing operations, such as trans-
lation and scaling. We isolate each object ¢ by intersecting
the sketch with its corresponding mask M; x S (Figure 13).
We then identify the group of masks that intersect with M;:
H(M;) = {M;|M; N M; # @}. Finally, we define the
inpainting mask C; as the intersection of #(M;) with the
object’s bounding box: C; = H(M;) N B; (shown in green
in Fig. 13), and feed it into the pretrained inpainting model.

3.4. Implementation Details

Optimization is performed with the AdamW optimizer, con-
figured with an initial learning rate of 6e-5 and a weight de-
cay of 0.0005 to promote generalization and prevent over-
fitting. Training is conducted with a batch size of 4 and
automatic learning rate scaling to ensure stable updates and
efficient adaptation. For the train, validation, and test sets,
we sampled 5,000, 500, and 500 images, respectively, from
the original SketchyScene train, val, and test splits. The ex-
periment was conducted on a single NVIDIA 4090 GPU,
with a total training time of four hours.

4. Scene Sketch Segmentation Benchmark

To evaluate our performance across a diverse set of
sketches, we construct a synthetic annotated scene-sketch
dataset. This dataset focuses on three key axes of variation,
designed to extend existing datasets: (1) drawing style, (2)
stroke style, and (3) object categories. We define drawing
style as a spectrum ranging from symbolic, which empha-
sizes abstraction and simplified representation, to realistic,
which prioritizes detailed and lifelike depiction. We de-
fine stroke variation as the differences in texture, width, and
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Figure 5. SketchyScene dataset provides ground truth object
bounding boxes and pixel-level instance segmentation masks for
scene layouts.

flow that characterize individual strokes, similar to the vari-
ety of brush types in digital drawing software. Our dataset
combines two complementary pipelines to enhance diver-
sity and object variety.

SketchyScene Layouts The SketchyScene dataset [47]
consists of 7,265 scene layouts containing 45 object cate-
gories. These layouts are of high quality, as they were man-
ually constructed by humans. Each data sample includes
an input sketch, object class labels, bounding boxes, and a
pixel-wise segmentation map (see Fig. 5). The sketches in
the dataset share a consistent clipart-like style. We extend
the SketchyScene dataset to include more diverse sketch
styles and stroke variations. Specifically, we incorporate re-
cent object sketching methods that introduce significantly
different sketch appearances compared to SketchyScene.
These include CLIPasso [29], which transforms images of
individual objects into sketches with relatively high im-
age fidelity, and SketchAgent [30], which generates sym-
bolic sketches resembling children’s drawings, offering a
more challenging out-of-distribution case. Both techniques
produce vector-format sketches, which we use to assemble
scene sketches while avoiding artifacts caused by transfor-
mations. Each object is placed at its ground truth location
and scaled to fit its bounding box while preserving its as-
pect ratio. Figure 6 demonstrate sketches produced from
a given SketchyScene layout. Exploring stroke variation is
crucial for testing the robustness of automatic segmentation
approaches, as real-world scenarios often involve highly
diverse sketch styles. We augment the vector sketch us-
ing three distinct brush styles through the Adobe Illustrator
Scripting API - Calligraphic Pen, Charcoal, and Brush Pen.
For each brush type, we manually select the stroke width
that best preserved a natural and visually appealing result.

Extended Categories To extend the range of 45 object
categories available in SketchyScene, we utilize the Visual
Genome dataset [13], a large-scale dataset containing di-
verse and richly annotated images containing over 33,877
distinct object categories. We use InstantStyle [33], a state-

of-the-art style transfer method, to generate corresponding
raster sketches from the input scene images, and segment
the sketch objects based on the provided image segmenta-
tion. As sketches are typically sparse, and very small ob-
jects may disappear during the translation from image to
sketch, we filtered the dataset to include 1068 images con-
taining five to ten distinct objects per scene. Our dataset
expands the class categories of SketchyScene by introduc-
ing 54 additional object classes, containing in total 72 cat-
egories. A few examples of the resulting dataset are shown
in Figure 7.

5. Results

Figures 1, 8, 11 and 24 present qualitative results of our
method across a diverse range of sketches. These include
various object categories, both abstract and detailed scenes,
different styles, and sketches from our new dataset featuring
stroke variations and challenging abstractions. Our method
effectively handles object categories beyond those used in
our fine-tuning from the SketchyScene dataset, such as toys,
furniture, and food items. Our approach successfully ad-
dresses challenging scenarios, such as detailed scenes with
numerous objects and occluded objects, as seen in Figure 1
and the first row of Figure 8. More results are provided in
the supplementary material.

5.1. Comparisons

We evaluate our method alongside existing scene sketch
segmentation approaches, including SketchyScene [47] and
the method proposed by Bourouis er al. [2]. Addition-
ally, we include Grounding DINO [17] as a baseline, ap-
plying it directly to sketches, using Recognize-Anything
Model (RAM) [42] for automatic labeling. Our evalua-
tion dataset consists of 7746 samples: 1,113 test samples
from the SketchyScene dataset, 1,113 samples from each of
the CLIPasso brush styles: Calligraphic Pen, Charcoal, and
Brush Pen, 1,113 samples from the SketchAgent style, and
1068 samples from the InstantStyle sketch dataset, span-
ning 99 object categories. Each method was applied to these
datasets following their recommended best practices. Note
that the SketchyScene mask generation implementation re-
lies on legacy dependencies that are no longer executable.
Therefore, we used SAM for mask generation based on their
detected bounding boxes, which yielded better performance
than reported in the original paper. Figure 9 illustrates se-
lected segmentation results for all instance segmentation
methods, with additional results provided in the supplemen-
tary material. Since the method by Bourouis et al. [2] is de-
signed for semantic segmentation rather than instance seg-
mentation, it was evaluated separately on a filtered subset of
our dataset, where each scene contained only one instance
per class.
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Figure 6. Samples from our synthetic dataset. We augment the SketchyScene dataset by generating vector sketches with varied drawing
styles based on SketchyScene’s scene layouts. Stroke style variation is introduced by re-rendering the scenes with three different brush
styles. Additionally, we create a more symbolic and challenging sketch type, resembling children’s drawings, shown on the right, while
maintaining the same scene layouts.

Table 1. Quantitative comparisons for object detection. We report IoU, AR, and AP metrics across seven datasets, along with the mean
and standard deviation for each method. IoU measures the overlap between predicted and ground-truth bounding boxes, AR evaluates
the ability to detect all relevant objects, and AP combines precision and recall across varying IoU thresholds from 50% to 95%. AP@50
and AP@75 indicate Average Precision at IoU thresholds of 50% and 75%, respectively, reflecting stricter requirements for bounding box
overlap. Our method demonstrates consistent improvements across nearly all datasets and metrics, significantly outperforming baselines,
especially in detecting sketch objects with precision.

IoU 1 AR T AP 7T AP@50 1 AP@75 1
SketchyS G-DINO Owurs |SketchyS G-DINO Ours |SketchyS G-DINO Ours |SketchyS G-DINO Owurs | SketchyS G-DINO Ours

SketchyScene 0.55 0.27 0.72| 0.42 0.27 0.86| 0.36 024 083| 0.79 0.31 093| 0.17 0.27 0.88
SketchAgent 0.27 0.16 0.73| 0.19 0.16 0.79| 0.15 0.12 0.75| 0.39 0.18 0.87| 0.05 0.13 0.78

C-Base 0.48 0.31 0.80| 0.35 0.30 0.85| 0.29 0.26 0.83| 0.70 0.37 093 0.11 0.30 0.87
C-Calligraphic| 0.48 028 0.72| 0.35 0.28 0.84| 0.29 024 081| 0.71 034 093] 0.11 0.27 0.86
C-Charcoal 0.40 0.27 0.76| 0.29 027 0.84| 0.24 024 0.79| 0.59 0.33 0.94| 0.08 0.27 0.88

C-BrushPen 0.41 0.27 0.75| 0.30 0.27 0.82| 0.25 0.23 0.79| 0.60 0.33 0.90| 0.10 0.26 0.82
InstantStyle 0.20 049 045 0.17 048 0.61| 0.12 0.37 0.51| 0.29 0.53 0.69| 0.08 0.40 0.52

All 0.39 0.26 0.70| 0.29 029 0.80| 0.24 0.24 0.75| 0.58 0.34 0.88| 0.11 0.27 0.80
+0.12 +0.04 +£0.11| =0.08 +0.08 +0.08| +0.08 +0.07 £0.11| +0.18 +0.10 +0.08| =+0.03 +0.07 £0.12

Input Image InstantStyle Sketch Instance Segmentation Table 2. Quantitative comparisons from image segmentation. We

report Accuracy and IoU metrics across seven datasets, along with
the mean and standard deviation for each method. Our method
consistently outperforms baselines across all datasets.
Metric Acc T ToU 1
Dataset SketchyS G-SAM Owurs | SketchyS G-SAM  Ours
SketchyScene 0.79 0.53 0.92 0.72 0.26 0.88
SketchAgent 0.39 0.35 0.88 0.38 0.16 0.84
C-Base 0.70 0.54 091 0.64 0.32 0.88
C-Calligraphic 0.66 0.50 0.87 0.63 0.30 0.86
C-Charcoal 0.59 0.47 0.85 0.43 0.26 0.84
C-BrushPen 0.66 0.51 0.89 0.54 0.29 0.85
InstantStyle 0.43 0.65 0.70 0.32 0.44 0.78
Figure 7. Illustration of our synthetic dataset. The input images are Al 0.60 050 0.86| 052 029 0.78
sourced from the Visual Genome dataset [13], which we filter to a 4014 4009 40.07| +014  +0.08 40.03

subset of scenes containing 5 to 10 object instances. We generate
the corresponding sketches with InstantStyle [33].

Object Detection Evaluation For object detection, we
report Intersection over Union (IoU), which measures
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Figure 8. Sketch segmentation results obtained by our method for
a diverse set of sketch styles and levels of complexity.

Table 3. Quantitative comparisons from image segmentation on
the filtered datasets. We report Accuracy and IoU metrics across
seven datasets, along with the mean and standard deviation for
each method. OpenVocab performs semantic segmentation, and
requires an input text prompt. We provide ground truth class labels
as input prompts to generate segmentations.

Metric Acc T TIoU 1

m OpenVocab  Ours | OpenVocab  Ours
SketchyScene 0.25 0.93 0.16 0.90
SketchAgent 0.23 0.93 0.16 0.88
C-Base 0.29 0.94 0.19 0.92
C-Calligraphic 0.32 0.88 0.22 0.88
C-Charcoal 0.55 0.85 0.43 0.85
C-BrushPen 0.26 0.91 0.12 0.88
InstantStyle 0.26 0.79 0.16 0.73
All 0.30 0.89 0.20 0.86
+0.11 +0.05 +0.10 +0.06

the overlap between predicted and ground-truth bounding
boxes, Average Recall (AR), which evaluates the ability
to detect all relevant objects, and Average Precision (AP),
which combines precision and recall across various IoU
thresholds. Our goal is to assess the ability to precisely
detect any object in the sketch, regardless of its class.
To achieve this, we calculate the mean of these metrics
across object instances rather than across classes. The re-
sults for instance segmentation methods are summarized in
Tab. 1. The SketchyScene method performs well on the
SketchyScene data, while its performance significantly de-
clines across all metrics when applied to other datasets,

Figure 9. Qualitative comparison of instance segmentation meth-
ods. Each row corresponds to a different sketch style, with the
first row illustrating a sample from SketchyScene and the remain-
ing rows showcasing samples from our dataset. Black pixels in-
dicate regions where segmentation was not applied. Our method
effectively segments sketch pixels into distinct instances without
introducing artifacts, outperforming alternative approaches.

particularly for the challenging styles of the SketchAgent
samples. In contrast, our method demonstrates consistent
performance across all datasets, achieving an average AR
score of 0.8, as shown in the last row of the table. Notably,
our method outperforms SketchyScene even on its native
dataset, demonstrating the effectiveness of leveraging pri-
ors from pretrained models on natural images and adapting
them for sketch segmentation. The scores obtained for our
baseline method, Grounding DINO, support our claim that
this model struggles to generalize to the domain of sketches
without adaptation, despite its strong performance on natu-
ral images. This is evident from the large margin in scores
between our method and Grounding DINO, seeing an in-
crease of 44% in IoU, 51% increase in AR, and 51% in-
crease in AP. Furthermore, while we fine-tuned Grounding
DINO exclusively on the SketchyScene dataset, the results
in the table confirm that this approach surprisingly gener-
alizes well to very different types of sketches and object
categories.



(a) Too many bounding boxes

Figure 10. Examples showcasing the limitations of our approach.
(a) The bounding box filtering process can still retain undesired
boxes, leading to artifacts in the final segmentation. (b) SAM
masks oftentimes are decent, but sometimes do contain noticeable
artifacts for larger objects.

Segmentation Evaluation We evaluate the final segmen-
tation results using two common metrics: Pixel Accuracy
(Acc), which measures the ratio of correctly labeled pixels
to the total pixel count in a sketch, and Intersection over
Union (IoU), which evaluates the overlap between the pre-
dicted and ground-truth segmentation masks. The results
for instance segmentation methods are presented in Tab. 2,
while the results for Bourouis et al. [2] are shown separately
in Tab. 3 since it performs semantic segmentation and re-
quires dataset filtering. As shown, our method outperforms
alternative approaches across both metrics, with a particu-
larly notable advantage over Grounded SAM. Additionally,
our method demonstrates robustness to various styles, espe-
cially excelling on the challenging SketchAgent style com-
pared to other methods.

6. Limitations and Future Work

While our method successfully segments scene sketches
across various styles and challenging cases, it has some lim-
itations. First, our bounding box filtering technique may
still include undesired boxes, potentially introducing arti-
facts when combining masks into the final segmentation
(Figure 10a). Second, our mask generation relies on SAM,
which generally produces good masks but can occasion-
ally introduce artifacts, particularly for objects occupying
large regions in the sketch (Figure 10b). Even after apply-
ing our refinement stage, some artifacts may persist in the
final segmentation. Future work could address this issue by
fine-tuning SAM specifically for sketches or incorporating
a learned refinement stage.

7. Conclusions

We introduced INKi, a method for instance segmentation
of raster scene sketches. Our approach adapts Grounding
DINO, an object detection model trained on natural images,
to the sketch domain through class-agnostic fine-tuning. We
utilized Segment Anything (SAM) for segmentation along
with a refinement stage that incorporates depth cues to re-
solve ambiguous pixels. Our method significantly improves
upon state-of-the-art approaches in this domain, demon-
strating the utility of natural image priors for sketch under-
standing tasks. We additionally provide a synthetic scene-
level annotated sketch dataset encompassing a wide range
of object categories and significant variations in drawing
styles. Our experiments demonstrate that INKi is robust
to these variations, achieving consistent performance across
diverse datasets.
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Figure 11. Scene sketch segmentations produced by our method for diverse types of scenes and sketch styles.
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Figure 12. INKi segmentation results on a diverse set of sketches from the SketchyScene dataset (first row) and our proposed dataset, which
includes three types of stroke style variations (second, third, and fourth rows), challenging abstract sketches generated with SketchAgent

(fifth row), and detailed sketches generated with InstantStyle (last row).
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Instance Segmentation of Scene Sketches Using Natural Image Priors
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Figure 13. Interactive interface for sketch editing, powered by our
instance segmentation and layer completion algorithm.
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A. Sketch Editing Interface

Our sketch segmentation and layering technique facilitates
sketch editing, allowing users to drag or manipulate seg-
mented objects without the need to manually sketch the af-
fected regions. We demonstrate this through an interactive
sketch editing interface (Figure 13) that enables users to up-
load a sketch, which is then segmented and transformed into
completed, ordered layers as detailed in our paper. This fa-
cilitates more efficient sketch editing by allowing artists to
easily move, copy, or delete pixels associated with specific
object instances, as the sketch is represented as an ordered
list of layers. Please see demo video for more examples.

B. Synthetic Dataset

In this section, we provide additional details on our syn-
thetic data creation process.

Input Synthetic Image Object Vector Sketch Input Synthetic Image Object Vector Sketch

Figure 14. Examples pairs of input synthetic image and output
generated object vector sketch.

B.1. Generating Vector Scene Sketches

We employ CLIPasso [29] and SketchAgent [30] to gen-
erate diverse vector sketches of single objects. For each
generation method, we create 10 distinct object instances
for all 45 classes in the SketchyScene dataset [47], ensur-
ing sufficient variability in our synthetic scenes. For CLI-
Passo’s image-to-vector conversion, we first generate pho-
torealistic synthetic images using SDXL [25]. The genera-
tion process uses a consistent prompt template: “A realistic
image of a {class_name} with a blank background”. Fig-
ure 14 demonstrates representative pairs of synthetic input
images and their corresponding generated vector sketches.
For SketchAgent, we generate sketches directly from class
labels as text prompts, producing 10 samples per class. Fig-
ure 15 illustrates representative examples of the generated
object sketches.

B.2. Generating Sketches from Natural Images

To expand beyond SketchyScene’s object categories, we
employ InstantStyle [33] to transform a subset of Visual
Genome [ 3] images into sketches, using a single CLIPasso
object sketch as the style reference. Figure 16 showcases a
gallery of examples from our InstantStyle-generated scene
sketch dataset.

C. Additional Qualitative Comparisons

We present additional qualitative comparisons between our
approach and baseline methods across benchmark scene
sketch datasets in Fig. 17 for SketchyScene, Fig. 18 for
SketchAgent, Fig. 19 for CLIPasso, Fig. 20 for InstantStyle,
to accompany our numerical evaluations included in the
paper. To compare with semantic segmentation method,
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Figure 15. Examples of object vector sketches generated by
SketchAgent.

namely OpenVocab, by Bourouis et al. [2], we created
a filtered version of all seven datasets, where each scene
contains at most one instance per object class. These fil-
tered scenes remain challenging for existing methods de-
spite their reduced complexity. We show qualitative results
in Fig. 21 for filtered SketchyScene dataset, Fig. 22 for
filtered SketchAgent dataset, and Fig 23 for filtered CLI-
Passo dataset, to accompany our qualitative results shown
in the paper.
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Figure 16. Example sketches from our InstantStyle dataset. These sketches are derived from Visual Genome [13] containing 5 to 10
annotated objects. For visual clarity, we mask unsegmented regions in the generated sketches. This dataset contains 54 new categories
beyond SketchyScene’s original 45 classes, and contain 1068 sketches in total.



SketchyScene Grounded SAM

Figure 17. Qualitative comparison of instance segmentation methods on the SketchyScene dataset. Our method surpasses
SketchyScene and Grounded SAM by delivering fine-grained, semantically consistent segmentations with precise boundaries. In the
urban scene (row 1), our approach accurately segments all object instances, cleanly separating the sun, tree, building, and character from
each other. For the park scenes (rows 2 and 3), it captures intricate details, such as the dog’s face and picnic items, which are either missed
or over-segmented by other methods. In the residential and cottage scenes (rows 4 and 5), our method effectively delineates repetitive
patterns like fences and handles dense objects like trees, preserving structural integrity where other approaches struggle. These results
highlight the robustness of our method in managing complex and detailed sketches.



SketchyScene Grounded SAM

Figure 18. Qualitative comparison of instance segmentation methods on the SketchAgent dataset. Both SketchyScene and Grounded
SAM struggle to segment these abstract sketches, which differ significantly from their training data of clipart-like and real objects. Our
method successfully segments individual instances while maintaining object boundaries, even in challenging cases like the last row where
objects overlap with a grid-patterned picnic blanket.
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Figure 19. Qualitative comparison of instance segmentation methods on the CLIPasso base dataset. Our method successfully detects
both large and small objects with ambiguous openings in their silhouettes, whereas baseline methods either merge multiple instances into
one or fail to detect them entirely.



SketchyScene Grounded SAM

Figure 20. Qualitative comparison of instance segmentation methods on the InstantStyle dataset. This dataset poses a significantly
greater challenge compared to the others due to its increased complexity, including diverse perspectives, intricate textures, and frequent
occlusions. Despite these difficulties, our method effectively locates object instances, such as the glass of water in row 2, the fork in row
3, and the food in dishes and bottles in row 4. Even with ambiguous shapes, as shown in row 5, our method outperforms GroundedSAM
by successfully segmenting the umbrella on the right separately from the person holding it. In the final row, our approach demonstrates its
capability by accurately segmenting both the pile of clothes on the couch and the couch itself.



Input OpenVocab Ours

Figure 21. Qualitative comparison of segmentation on filtered SketchyScene dataset. We prompt the semantic segmentation model
with ground truth class labels; however, it struggles to locate the objects due to the significant deviation of this sketch style from the data

it was trained on. Our performance on both complete and filtered scenes are equally as robust, detecting and segmenting object instances
precisely.
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Figure 22. Qualitative comparison of segmentation on filtered SketchAgent dataset. We prompt the semantic segmentation model
with ground truth class labels; however, OpenVocab struggles to accurately identify instances of the correct class, often assigning multiple
class labels to the same object, as indicated by the color gradients. Sometimes it is unable to label any sketch pixels in the scene (row 5).
In contrast, our method effectively segments object instances, ensuring clear separation and consistent labeling.
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Figure 23. Qualitative comparison of segmentation on filtered CLIPasso dataset. We prompt the semantic segmentation model with
ground truth class labels; however, OpenVocab struggles to accurately identify instances of the correct class, often assigning multiple class
labels to the same object, as indicated by the color gradients. Sometimes it is unable to label any sketch pixels in the scene (row 4). In
contrast, our method effectively segments object instances, ensuring clear separation and consistent labeling.
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Figure 24. ours on SketchyScene inputs (first row), clipasso two styles (second row), sketchagent(last row)
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